
Contributions



Contents1

TL;DR 22

Suitability of contributions 33

Upstream First Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Upstream Early, Upstream Often . . . . . . . . . . . . . . . . . . . . . 45

Extending Apertis 56

Adding components to Apertis . . . . . . . . . . . . . . . . . . . . . . 57

Dedicated Project Areas . . . . . . . . . . . . . . . . . . . . . . . 68

Extending existing components . . . . . . . . . . . . . . . . . . . . . . 79

Adding support for new hardware . . . . . . . . . . . . . . . . . . . . . 810

Adding designs to Apertis . . . . . . . . . . . . . . . . . . . . . . . . . 811

Concept Design Document Template . . . . . . . . . . . . . . . . 1112

Other important bits 1313

Sign-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1314

Privileged processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1315

Getting commit rights . . . . . . . . . . . . . . . . . . . . . . . . . . . 1316

The role of maintainers . . . . . . . . . . . . . . . . . . . . . . . . . . 1417

Work across releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1518

Hardware packs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1619

Contribution Template 1620

Frequently asked questions 1921

When is a good time to start offering package updates? . . . . . . . . 1922

Is it expected that the package maintainer checks the version updates23

of upcoming releases for . . . . . . . . . . . . . . . . . . . . . . . 1924

What happens in case the dependencies are not yet available in the25

upcoming release, because . . . . . . . . . . . . . . . . . . . . . . 1926

What is the latest point in time to deliver the stable version, etc..? . . 2027

What can a package maintainer expect from the Apertis distribution28

maintainer in a release flow? . . . . . . . . . . . . . . . . . . . . . 2029

This guide covers the expectations and processes for Apertis developers wish-30

ing to make contributions to the Apertis project and the wider open source31

ecosystem. These policies should be followed by all developers, including core32

and third party contributors. A checklist1 is provided in conjunction with these33

policies to aid contributors.34

TL;DR35

Do you want to quickly submit some changes to an Apertis component?36

1https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/

2

https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/
https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/


• Have you tried to submit your changes upstream first? Contributing up-37

stream benefits the community at large and keeps Apertis sustainable.38

Once changes have been landed upstream, backporting them to the ver-39

sions shipped with Apertis is usually an expedite process.40

• Register and log to the Apertis GitLab instance241

• Fork the project you want to patch on the Apertis GitLab instance342

• Create commits according to the version control best practices443

• Go through the contribution checklist544

• Submit the branch with your commits as a Merge Request645

• Address any review feedback746

Suitability of contributions47

Like most open source projects, Apertis requires contributions are submitted via48

a process (which in the case of Apertis is defined below) to ensure that Apertis49

continues to meet it’s design goals and remain suitable for it’s community of50

users. In addition to design and technical implementation details, the suitability51

of contributions will be checked to meet requirements in areas such as coding52

conventions8 and licensing9.53

Upstream First Policy54

Apertis is a fully open source GNU/Linux distribution that carries a lot of55

components for which it is not the upstream. The goal of upstream first1056

is to minimize the amount of deviation and fragmentation between Apertis57

components and their upstreams.58

Deviation tends to duplicate work and adds a burden on the Apertis developers59

when it comes to testing and updating to newer versions of upstream compo-60

nents. Also, as the success of Apertis relies on the success of open source in61

general to accommodate new use cases, it is actively harmful for Apertis to not62

do its part in moving the state of the art forward.63

It is the intention of Apertis to utilize existing open source projects to provide64

the functionality required, where suitable solutions are available, over the cre-65

ation of home grown solutions that would fragment the GNU/Linux ecosystem66

further.67

2https://gitlab.apertis.org/
3https://gitlab.apertis.org/
4https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/version_control/
5https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/
6https://docs.gitlab.com/ee/user/project/merge_requests/getting_started.html
7https://docs.gitlab.com/ce/development/code_review.html#having-your-merge-

request-reviewed
8https://apertis-website-0b3586.pages.apertis.org/policies/coding_conventions/
9https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/

10https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/

3

https://gitlab.apertis.org/
https://gitlab.apertis.org/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/version_control/
https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/
https://docs.gitlab.com/ee/user/project/merge_requests/getting_started.html
https://docs.gitlab.com/ce/development/code_review.html#having-your-merge-request-reviewed
https://apertis-website-0b3586.pages.apertis.org/policies/coding_conventions/
https://apertis-website-0b3586.pages.apertis.org/policies/coding_conventions/
https://apertis-website-0b3586.pages.apertis.org/policies/coding_conventions/
https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/
https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/
https://gitlab.apertis.org/
https://gitlab.apertis.org/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/version_control/
https://apertis-website-0b3586.pages.apertis.org/policies/contribution_checklist/
https://docs.gitlab.com/ee/user/project/merge_requests/getting_started.html
https://docs.gitlab.com/ce/development/code_review.html#having-your-merge-request-reviewed
https://docs.gitlab.com/ce/development/code_review.html#having-your-merge-request-reviewed
https://apertis-website-0b3586.pages.apertis.org/policies/coding_conventions/
https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/
https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/


This policy should be taken into consideration when submitting contributions68

to Apertis.69

Upstream Early, Upstream Often70

One mantra that can be often heard in Open Source communities is “upstream71

early, upstream often”. The approach that this espouses is to breakdown large72

changes into smaller chunks, attempting to upstream a minimal implementation73

before implementing the full breath of planned features.74

Each open source community tends to be comprised of many developers, which75

share some overlap between their goals, but may have very different focuses. It76

is likely that other developers contributing to the project may have ideas about77

how the features that you are planning may be better implemented, for example78

to enable a broader set of use cases to utilise the feature. Submitting an early79

minimal implementation allows the general approach to be assessed, opinions80

to be sought and a consensus reached regarding the implementation. As it is81

likely that some changes will be required, a minimal implementation minimizes82

the effort required to take feedback into account.83

Taking this approach a step further, it can often be instructive to share your84

intention to implement larger features before starting. Such a conversation85

might be started by sending an email to the projects devel mailing list11 saying:86

Hi,87

88

I'm attempting to use <project> to <task> for my project.89

90

I'm thinking about doing <brief technical overview> to enable this usecase.91

92

I'm open to suggestions should there be a better way to solve this.93

94

Thanks,95

96

<developer>97

This enables other experienced developers the chance to suggest approaches that98

may prove to be the most efficient, saving effort in implementation and later in99

review, or may point to missed existing functionality that can be used to solve100

a given need without needing substantial development effort.101

11https://lists.apertis.org/

4

https://lists.apertis.org/
https://lists.apertis.org/


Extending Apertis102

Adding components to Apertis103

Apertis welcomes requests for new components to be added to the distribution104

and can act as a host for projects where required, however the open source focus105

of Apertis should be kept in mind and any proposed contributions need to both106

comply with Apertis policies and present a compelling argument for inclusion.107

Additional components can be categorised into 3 main groups:108

• Existing upstream component available in Debian stable (with suitable109

version)110

• Existing upstream component, not available in debian stable111

• New component on gitlab.apertis.org112

There is a maintenance effort associated with any components added to Apertis,113

as any components added will need to be maintained within the Apertis ecosys-114

tem. The effort required to maintain these different categories of components115

are very different. Prepackaged Debian components require a lot less mainte-116

nance effort than packaging other existing upstream components. Developing a117

new component on gitlab.apertis.org requires both the development and pack-118

aging/maintenance to be carried out within Apertis, significantly raising the119

effort required.120

When looking for ways to fullfil a requirement there are a number of factors121

that will increase the probability of a solution being acceptable to Apertis.122

• Component already included in Debian stable: As Apertis is based on123

Debian and already has processes in place to pull updates from this source.124

The cost of inclusion is dramatically lower than maintaining packages125

drawn from other sources, as a lot of the required effort to maintain the126

package is being carried out within the Debian ecosystem.127

• Proven actively maintained codebase: Poorly maintained codebases128

present a risk to Apertis, increasing the chance that serious bugs or129

security holes will go unnoticed. Picking a solution that has an active130

user base, a developer community making frequent updates and/or is a131

mature codebase that has undergone significant “in the field”testing makes132

the solution more attractive for inclusion in Apertis. It is understood133

that, whilst extensive, the Debian repositories are not all encompassing,134

if proposing an existing open source component that isn’t currently135

provided by Debian, being able to show that it is actively maintained will136

be important.137

• Best solution: In general, there exists more open source solutions than138

there exists problems. To be in with a good chance of having a compo-139

nent included in Apertis it will be required to explain why the chosen140

solution represents the best option for Apertis. What is “best”is often141

nuanced and will be affected by a number of factors, including integra-142

5



tion/overlap with existing components and the size/number of dependen-143

cies it has (especially if they aren’t currently in Apertis). It may be that144

whilst a number of existing solutions exist, none of them are a good fit for145

Apertis. This may suggest a new component is the best solution, though146

adapting/extending one of the existing solutions should also be considered.147

The Apertis distribution is supported by it’s members. As previously mentioned,148

in order to ensure that Apertis remains viable and correctly focused, it is im-149

portant that any additions to the main Apertis projects12 are justified and can150

be shown to fill a specific and real use case. Maintaining the packaging, up-151

dating the codebases of which Apertis is comprised and performing testing on152

supported platforms is a large part of the effort needed to provide Apertis. As a153

result, it will be necessary to either be able to provide a commitment to support154

any packages proposed for inclusion in the main Apertis projects or gain such155

a commitment from an existing member.156

The Apertis development team commit to maintaining the packages included in157

the references images. Packages may be added to the main package repositories158

but not form part of the reference images. Such packages will be maintained on159

a best effort basis, that is as long as the effort remains reasonable the Apertis160

team will attempt to keep the package in a buildable state, however runtime161

testing will not be performed. Should the package fail to build or runtime issues162

are reported and significant effort be required to modify the package the original163

or subsequent users of the package may be approached to help resource fixing164

the package. Ultimately the package may be removed if a solution can not be165

found. Likewise, should a different common solution for Apertis be chosen at a166

later date, the package may be deprecated and subsequently removed.167

Proposals for inclusion of new components are expected to be made in the form168

of a written proposal. Such a proposal should contain the following information:169

• Description of the problem which is being addressed170

• Why the functionality provided by the proposed component is useful to171

Apertis and it’s audience172

• A review of the possible solutions and any advantages and disadvantages173

that have been identified with them174

• Why the proposed solution is thought to present the best way forward,175

noting the points made above where relevant176

• Whether any resources are to be made available to help maintain the177

component.178

Dedicated Project Areas179

An alternative to adding packages to the main Apertis project is to apply to180

have a dedicated project area, where code specific to a given project can be181

stored. Such an area can be useful for providing components that are highly182

12https://apertis-website-0b3586.pages.apertis.org/policies/package_maintenance/

6

https://apertis-website-0b3586.pages.apertis.org/policies/package_maintenance/
https://apertis-website-0b3586.pages.apertis.org/policies/package_maintenance/


specific to a given project and/or as a staging area for modifications to core183

packages that might later get folded back into the main area, either by changes184

being submitted to the relevant Apertis component or after changes have been185

upstreamed13 to the components main project. A dedicated area will allow a186

project group to iterate on key components more rapidly as the changes made187

do not need to work across the various supported hardware platforms. It must188

be noted that whilst a dedicated project area would allow some requirements189

with regard to platform support to be ignored, packages in such areas would still190

be required to comply with other Apertis rules such as open source licensing14.191

It should be expected that the Apertis developers will take a very hands off192

approach to the maintenance and testing of packages in such areas. If packages193

in such areas require work, the project maintainers will be contacted. The194

Apertis maintainers may at their discretion help with minor maintenance tasks195

should a package be of interest to the Apertis project. Packages that become196

unmaintained may be removed.197

Requests for dedicated project areas are also expected to be made in a form of198

a written proposal. Such a proposal should contain the following information:199

• Description of the project requiring a dedicated project area200

• Preferred name to be used to refer to the project201

• Expected use of the dedicated area202

• Expected lifetime of the project area203

• Contact details of project maintainers204

Such submissions should be made via the devel mailing list15.205

The submission should be discussed on the mailing list and must be agreed with206

the Apertis stakeholders.207

Extending existing components208

Apertis carries a number of packages that have been modified compared to their209

upstream versions. It is fairly typical for distributions to need to make minor210

modifications to upstream sources to tailor them to the distribution, Apertis is211

not different in this regard.212

Whilst Apertis does accept changes to existing components, it needs to be ac-213

knowledged that this increases the effort required to maintain the package in214

question. It may be requested that an attempt be made to upstream the changes,215

in line with the upstream first policy, either to the packages upstream or Debian.216

More guidance is provided in the upstreaming16 documentation. If changes are217

not generally of use or would have a negative impact on the broader Apertis218

13https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/
14https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/
15https://lists.apertis.org/
16https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/

7

https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/
https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/
https://lists.apertis.org/
https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/
https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/
https://apertis-website-0b3586.pages.apertis.org/policies/license-expectations/
https://lists.apertis.org/
https://apertis-website-0b3586.pages.apertis.org/policies/upstreaming/


user base, changes may be required to be carried by the specific project within219

a dedicated project area.220

Adding support for new hardware221

One special case of contributions is the support for new hardware, since even if222

the same general rules apply, some additional considerations need to be taken223

into account.224

When adding new hardware there are two scenarios:225

• Adding new hardware to an already supported board: This is the simplest226

one, consisting in adding or enabling the required drivers in the kernel or227

in other packages (such as ofono)228

• Adding a new board: This requires to provide complete support for the229

new board.230

In order to support new boards, Apertis requires maintainers to provide:231

• Hardware pack: A combination of hardware specific packages, such as232

bootloader, kernel, firmware, as described in New hardware17233

• Image recipe: A recipe as described in Image building18 which makes use234

of the hardware pack.235

As mentioned before, Apertis follows the policies of Upstream First and Up-236

stream Early Upstream Often, so hardware packs should be based in upstream237

packages, like linux in Debian. This guarantees the maintainability of such238

hardware support across time and releases.239

Besides a basic support as the one described, boards can become [Reference240

Hardware]({{ }}). The key value in this approach is the Apertis QA19 which241

ensures that automated tests are run in LAVA on daily images and manual242

testing is done on weekly images. For this to happen, an agreement needs to be243

reached with the Apertis team.244

Adding designs to Apertis245

Another way to contribute to Apertis is with design documents. A design docu-246

ment contains the description of all relevant aspects of a feature or of a require-247

ment. The current design documents can be found in the Concepts Designs248

section20. These documents cover topics that have been researched but not249

necessarily implemented. They should provide a good understanding of the im-250

pact of the technology that forms the basis of the concept, what it is, how it251

17https://apertis-website-0b3586.pages.apertis.org/guides/low_level/enabling_new_har
dware/

18https://apertis-website-0b3586.pages.apertis.org/guides/image_devel/image_building/
19https://apertis-website-0b3586.pages.apertis.org/qa/
20https://apertis-website-0b3586.pages.apertis.org/concepts/

8

https://apertis-website-0b3586.pages.apertis.org/guides/low_level/enabling_new_hardware/
https://apertis-website-0b3586.pages.apertis.org/guides/image_devel/image_building/
https://apertis-website-0b3586.pages.apertis.org/qa/
https://apertis-website-0b3586.pages.apertis.org/concepts/
https://apertis-website-0b3586.pages.apertis.org/concepts/
https://apertis-website-0b3586.pages.apertis.org/concepts/
https://apertis-website-0b3586.pages.apertis.org/guides/low_level/enabling_new_hardware/
https://apertis-website-0b3586.pages.apertis.org/guides/low_level/enabling_new_hardware/
https://apertis-website-0b3586.pages.apertis.org/guides/image_devel/image_building/
https://apertis-website-0b3586.pages.apertis.org/qa/
https://apertis-website-0b3586.pages.apertis.org/concepts/


works, what are the threat models, the required infrastructure, how it would be252

integrated with Apertis and anything else that is deemed relevant.253

Such designs should be updated when implemented to explicitly cover the fi-254

nal implementation and moved to a suitable section of the site, typically the255

Architecture21 or Guides22 section.256

Project-wide impact is the metric used to decide if a contribution will be handled257

as a component or as a design. If the impact of the contribution on the Apertis258

project goes beyond the additional maintenance effort, it is likely to require a259

design document before the component contribution.260

As an example we will consider a proposal to provide tools and workflows for261

process automation by including the Robot Framework23 in the Apertis Uni-262

verse. The Robot Framework is a generic open source automation framework263

that can be used for automation of tests and processes. Robot Framework is264

released under Apache License 2.024. However we do not expect to ship Robot265

Framework components on Apertis target images.266

The first important consideration is the state-of-the-art for addressing the goals267

of the design. In our example the Robot Framework is preferred due it’s matu-268

rity, unique and simple to use descriptive language, and it’s active development269

community. However a strong argument in favor of the Robot Framework is it’270

s user base. Adding the Robot Framework to the Apertis Universe is expected271

to bring Robot Framework users to Apertis.272

The next important consideration are how the design is expected to work and273

the potential impact on Apertis. The Robot framework has a layered archi-274

tecture. The top layer is the simple, powerful, and extensible keyword-driven275

descriptive language for testing and automation. This language resembles a276

natural language, is quick to develop, is easy to reuse, and is easy to extend.277

On the bottom layer of the architecture is the item to be tested, or the process278

to be automated.279

The middle layer is what makes the Robot Framework extensible: libraries.280

A library, in Robot Framework terminology, extends the Robot Framework281

language with new keywords, and provides the implementation for these new282

keywords. Each Robot Framework library acts as glue between the high level283

language and low level details of the item being tested, or of the environment284

in which the item to be tested is present.285

Adding the Robot Framework to the Apertis Universe has potential to impact:286

1. Development workflow: Apertis encourages the use of continuous integra-287

tion and the use of shared infrastructure resources instead of resources288

that are private to specific developers.289

21https://apertis-website-0b3586.pages.apertis.org/architecture/
22https://apertis-website-0b3586.pages.apertis.org/guides/
23https://robotframework.org/
24http://www.apache.org/licenses/LICENSE-2.0.html

9

https://apertis-website-0b3586.pages.apertis.org/architecture/
https://apertis-website-0b3586.pages.apertis.org/guides/
https://robotframework.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://apertis-website-0b3586.pages.apertis.org/architecture/
https://apertis-website-0b3586.pages.apertis.org/guides/
https://robotframework.org/
http://www.apache.org/licenses/LICENSE-2.0.html


2. Testing Apertis images: Apertis encourages the use of environments that290

are as close as possible to production environments, meaning that ideally,291

the Apertis images under test are not instrumented for testing, and are292

only minimally modified.293

3. Testing infrastructure: Apertis uses LAVA for deployment of operating sys-294

tem and software in hardware, and for automated testing. The two main295

constraints are LAVA being asynchronous and non-interactive. While both296

developers and CI pipelines can submit jobs to LAVA, they cannot inter-297

act with a job while it is running. The LAVA workflow is: submit a job,298

wait for the job to be selected for execution, wait for the job to complete299

execution, and download test results.300

Addressing the benefits of the new design proposal is also important. As men-301

tioned, adding tools and workflows for process automation with the Robot302

Framework will extend the Apertis projects and we expect to attract more303

users by doing so. Adding real-world use cases can illustrate the value with a304

good level of details.305

The proposal should also describe how to address the integration with Apertis306

taking into account the constraints of the Apertis development workflow, of307

testing Apertis images, and of the Apertis testing infrastructure.308

The design proposal can also include a high level description of the estimated309

work. For example, adding Robot Framework to Apertis will involve developing310

and/or modifying Robot Framework libraries; and developing a run-time com-311

patibility layer for LAVA to keep testing environments as close as possible to312

production environments, and to adapt the execution of Robot Framework tests313

to suit the LAVA constraints.314

And finally it could contain a high level implementation plan. In our example,315

one possible way to integrate Robot Framework is to adopt it in stages:316

1. Add Robot Framework to the Apertis SDK to enable developers to use317

the Robot Framework locally318

2. Robot Framework Integration development: Adapt libraries and create319

the run-time compatibility layer for LAVA320

3. Deployment on the Apertis infrastructure321

This section describes general topics, but it may not be complete for all designs.322

Regarding the level of details the design document should be complete enough323

to describe the design and surrounding problems to developers and project man-324

agers, but it is not necessary to describe implementation details.325

As a rule of thumb start with a lean design document and submit it for review326

as early as possible. You can send a new design for review to the same process327

used for a component contribution25.328

25https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_proc
ess/

10

https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/


Concept Design Document Template329

The following template should be used as a guide when writing new concept330

designs:331

11



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

+++

title = "<document title>"

weight = 100

outputs = [ "html", "pdf-in",]

date = "20xx-xx-xx"

+++

# Introduction

# Terminology and concepts

# Use cases

# Non-use cases

# Requirements

# Existing systems

# Approach

# Evaluation Report

# Recommendation

## Design recommendations

# Alternative designs

# Open questions

## Unresolved design questions

## Unresolved implementation questions

# Risks

# Summary

# Appendix

# References

12



Other important bits332

Sign-offs333

Like the git project and the Linux kernel, Apertis requires all contributions to334

be signed off by someone who takes responsibility for the open source licensing335

of the code being contributed. The aim of this is to create an auditable chain336

of trust for the licensing of all code in the project.337

Each commit which is pushed to the main branches in git must have a Signed-338

off-by line, created by passing the --signoff/-s option to git commit. The line339

must give the real name of the person taking responsibility for that commit, and340

indicates that they have agreed to the Developer Certificate of Origin26. There341

may be multiple Signed-off-by lines for a commit, for example, by the developer342

who wrote the commit and by the maintainer who reviewed and pushed it:343

Signed-off-by: Random J Developer <random@developer.example.org>344

Signed-off-by: Lucky K Maintainer <lucky@maintainer.example.org>345

Apertis closely follows the Linux kernel process for sign-offs, which is described346

in section 11 of the kernel guide to submitting patches27.347

Privileged processes348

Pushing commits to gitlab.apertis.org requires commit rights. Whilst commit349

rights to most repositories are only granted to trusted contributors (see “Getting350

commit rights”for how to get commit rights) the Apertis GitLab infrastructure351

is open for registration, enabling anyone to sign up for an account, fork packages352

into there personal space and submit merge requests (see the development pro-353

cess28 for more details). All commits must have a Signed-off-by line assigning354

responsibility for their open source licensing.355

Some admin steps on the periphery of packaging and releasing new versions of356

Apertis modules as Debian packages may require access to build.collabora.com357

(OBS). These are issued separately from commit rights, and are generally not358

needed for the main development workflows.359

Submitting automated test runs on lava.collabora.dev requires CI rights, which360

are granted similarly to packaging rights. However, CI results may be viewed361

read-only by anyone.362

Getting commit rights363

Commit rights (to allow direct pushes to git, and potentially access to the364

package building system, build.collabora.com) may be granted to trusted third365

26http://developercertificate.org/
27https://www.kernel.org/doc/Documentation/SubmittingPatches
28https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_proc

ess/

13

http://developercertificate.org/
https://www.kernel.org/doc/Documentation/SubmittingPatches
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
http://developercertificate.org/
https://www.kernel.org/doc/Documentation/SubmittingPatches
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/
https://apertis-website-0b3586.pages.apertis.org/guides/app_devel/development_process/


party contributors if they regularly contribute to Apertis, with high quality366

contributions at the discretion of current Apertis maintainers.367

Accounts on the Apertis GitLab instance can are available via open registra-368

tion29369

By creating an account you signify that you accept the Apertis Privacy Policy30370

and Terms of Use31371

For access to other Apertis infrastructure, please send an email to account-372

requests@apertis.org including:373

• Your full name374

• The email address you prefer to be contacted through375

• The nickname/account name you wish to be known by on the Apertis376

GitLab377

The role of maintainers378

Most Open Source projects have one or more core contributors that take on a379

managerial role for the project. This group may include the original author(s)380

of the project and long-term trusted contributors, though in many projects with381

a longer history, lead of the project may well have been taken on by another382

knowledgable contributor.383

The basic role of a project maintainers is to:384

• help set the direction for the project;385

• ensure that the projects policies are followed and that the project continues386

to work towards it’s stated objectives;387

• review and evaluate contributions for correctness and suitability;388

• apply accepted contributions;389

• resolve issues (such as bugs and security issues) that arise;390

• and ensure the processes required to release new project artifacts are com-391

pleted.392

Larger projects may have many maintainers who specialise in parts of the work393

that need to be carried out or who have deeper knowledge of specific parts of394

a larger codebase. For example such maintainers may be in charge of applying395

these roles to a single component within the Apertis distribution.396

The Apertis maintainers are funded by the projects backers, with direction397

agreed between the maintainers and backers to fulfill the needs of the backers398

whilst driving the project towards it’s stated objectives. Many of the maintainers399

have a long history with the Apertis project or have come to the project with400

lots of experience in the area in which they work (such as Debian packaging).401

29https://gitlab.apertis.org/users/sign_up
30https://apertis-website-0b3586.pages.apertis.org/policies/privacy_policy/
31https://apertis-website-0b3586.pages.apertis.org/policies/terms_of_use/

14

https://gitlab.apertis.org/users/sign_up
https://gitlab.apertis.org/users/sign_up
https://gitlab.apertis.org/users/sign_up
https://apertis-website-0b3586.pages.apertis.org/policies/privacy_policy/
https://apertis-website-0b3586.pages.apertis.org/policies/terms_of_use/
https://gitlab.apertis.org/users/sign_up
https://apertis-website-0b3586.pages.apertis.org/policies/privacy_policy/
https://apertis-website-0b3586.pages.apertis.org/policies/terms_of_use/


The Apertis maintainers are responsible for ensuring that bug and security fixes402

are applied to the various components of which Apertis is made and for migrat-403

ing to newer releases of it’s upstreams inline with the documented polices. The404

maintainers then ensure that the source of these components is reliably built405

into the binaries and images provided, covering the range of architectures and406

platforms supported by the project.407

In addition to tracking updates and fixes from the projects that Apertis uses, the408

maintainers also review changes that are submitted to the project from contrib-409

utors. The maintainers actively contribute to the project and submit changes410

following the same processes that are expected from other contributors. All411

such changes are reviewed to ensure that they meet the project goals, objectives412

and policies as well as ensuring the are sound and do not contain any obvious413

issues.414

Whilst some contributors may remain active within the projects community415

of users and developers for some time, this is a long way from guaranteed.416

Maintainers must evaluate contributions to ensure that the changes that are417

being proposed would continue to be maintainable in the absence of the original418

contributor. As a result the maintainers may reject contributions that otherwise419

appear to meet the policies if they feel that they would be impossible to maintain420

or requiring changes to make the contribution more maintainable for the project.421

The maintainer is usually taking on the responsibility on behalf of the project422

to ensure that your changes and modifications continue to be provided by the423

project, porting them to new versions of packages or ensuring that they remain424

valid as the project inevitably changes to accommodate new goals or the ever425

changing computing landscape. As a result accepting changes will transfer this426

burden from you to the maintainers. You can continue to use the project with-427

out needing to actively maintain the changes. As a result the onus is on the428

contributor to persuade the project of the advantages of the changes, not for429

the project to be beholden to accept contributions.430

Work across releases431

The Apertis releases flow32 sets a strict schedule for development, which should432

help to plan the work and contributions.433

Using development releases, contributors and maintainers work in new features434

following the policies of Upstream First and Upstream Early Upstream Often.435

Thanks to this approach, new development releases bring new improvements436

that can be tested by the community.437

After testing new features and bug fixes, a maintainer can propose to backport438

low impact changes to stable release using -security, -updates or -backports,439

providing a good rationale for the request and a justification on the low impact440

32https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/

15

https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/
https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/


for a stable release. This process allows maintainers to address issues in stable441

version while ensuring the reliability of stable releases.442

Hardware packs443

As described in Adding support for new hardware, hardware packs present a444

special case which requires additional clarifications.445

If the Apertis upstream polices are followed, the additional effort to maintain446

hardware packs in Apertis should be minimal, as the main support will already447

be available trough some upstream package. However, integration and QA play448

a key role.449

For hardware not listed as reference33, Apertis assumes hardware pack main-450

tainers will run regular tests on the devices for all the supported releases to451

confirm the status. If issues are found during testing, maintainers should report452

them in the Apertis Issues board34, so the community is aware of them and can453

keep track of the latest news.454

For reference boards35 this process is carried out by the Apertis team and the455

latest status can be tracked using the Apertis QA Report36 application.456

Contribution Template457

This section contains a contribution template that illustrates the ideal first email458

a developer would send for adding a design document to Apertis. This template459

for the first email contains the description of the design document instead of460

the design document itself. The idea is to promote involving the Apertis team461

as early as possible, and ideally before completing the work.462

The rationale for this approach is that it is very difficult for an external con-463

tributor to understand the impact a contribution can bring to Apertis, and by464

asking early, the work can be done in ways that are compatible with Apertis465

and welcome by the Apertis team.466

From: Your name <your email>467

To: devel@lists.apertis.org468

Subject: Robot Framework design document469

470

Hi,471

472

I want to contribute to Apertis, and I am sending this email to ask if our473

proposal can be added to Apertis. I am sending the email based on the474

contribution template I found on the Apertis website, and we are looking475

33https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
34https://gitlab.apertis.org/infrastructure/apertis-issues/-/issues
35https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
36https://qa.apertis.org/

16

https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
https://gitlab.apertis.org/infrastructure/apertis-issues/-/issues
https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
https://qa.apertis.org/
https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
https://gitlab.apertis.org/infrastructure/apertis-issues/-/issues
https://apertis-website-0b3586.pages.apertis.org/reference_hardware/
https://qa.apertis.org/


forward for receiving feedback from the Apertis team.476

477

Thank you,478

479

Your name480

481

-- // --482

483

1. Me and my team484

I am a developer, I am specialized in embedded devices, and I work in a product485

team that creates IoT devices with all sorts of environmental sensors and486

actuators.487

488

489

2. What is the goal of my proposal490

My proposal is for a design document that describes tools and workflows for491

process automation using the Robot Framework. The Robot Framework is a generic492

open source automation framework that can be used for automation of tests and493

processes.494

495

- From our perspective this adds value to the Apertis Universe. Do you agree?496

497

498

2. State-of-the-art499

We prefer the Robot Framework because it is mature, it is simple to use, and500

because it has an active development community.501

502

While there are other automation frameworks available, they tend to be purpose503

specific. Examples of purpose specific automation frameworks that we considered504

include Selenium and JUnit.505

506

3. How does our contribution works?507

The Robot framework has a layered architecture. The top layer is the simple,508

powerful, and extensible keyword-driven descriptive language for testing and509

automation. This language resembles a natural language, is quick to develop, is510

easy to reuse, and is easy to extend. On the bottom layer of the architecture is511

the item to be tested, or the process to be automated.512

513

The middle layer is what makes the Robot Framework extensible: libraries. A514

library, in Robot Framework terminology, extends the Robot Framework language515

with new keywords, and provides the implementation for these new keywords. Each516

Robot Framework library acts as glue between the high level language and low517

level details of the item being tested, or of the environment in which the item518

to be tested is present.519

520

521

17



4. Potential impact on Apertis?522

We are aware there the architecture of the Robot Framework is different from the523

Archutecture of LAVA. In some cases the Robot Framework accepts human524

intervention with tests while LAVA expects everything to be automated. While we do525

not fully understand to which extent this will impact Apertis, we expect that for our526

design proposal will need to adapt to Apertis and LAVA constraints. Can you help us527

here?528

529

5. Benefits for Apertis?530

The Robot Framework project is active for many years and is used for a variety531

of use cases. We expect that adding the Robot Framework to the Apertis Universe532

will bring Robot Framework users to Apertis.533

534

535

6. What is the license of the main components?536

The Robot Framework itself is licensed under the Apache License 2.0, however537

Robot Framework libraries can use different licenses.538

539

540

7. The plan to integrate the design into Apertis541

Our understanding is that Apertis currently uses LAVA for testing, and that542

images being tested are as close to production images as possible (almost no543

testing instrumentation included). We propose to develop and/or modify a few544

Robot Framework libraries, and to create a run-time compatibility layer for LAVA.545

We expect that the combination of custom libraries with the run-546

time compatibility547

layer for LAVA will enable us to keep testing environments as close as possible548

to production environments, and to adapt the execution of Robot Framework tests549

to suit the Apertis and LAVA constraints.550

551

552

8. Estimated work to implement the design553

Our ballpark estimation to add or modify Robot Framework libraries and to create554

the run-time compatibility layer for LAVA is of approximatedly 1500 hours of555

work. But we need your help to fully understand the impact on the Apertis side.556

557

558

9. High level implementation plan559

While we understand our use case and requirements, we would like to receive560

feedback from other potential users as soon as possible. Our idea is to deploy561

the Robot Framework in stages to allow early involvement of other users:562

563

- Add Robot Framework to the Apertis SDK to enable developers to use the Robot564

Framework locally565

566

- Robot Framework Integration development: Adapt libraries and create the run-567

18



time568

compatibility layer for LAVA569

570

- Deployment on the Apertis infrastructure571

Frequently asked questions572

When is a good time to start offering package updates?573

Package updates should be offered as soon as they are stable enough, through574

the development release available. This will allow testing the new version in the575

latest daily images and also allow other interested parties to get involved in the576

development, test the new features and provide feedback. This will also help577

package maintainers to get early feedback about the changes.578

Is it expected that the package maintainer checks the ver-579

sion updates of upcoming releases for580

its dependencies?581

The Apertis release flow provides different types of releases: development, pre-582

view and stable. Developers should push new features to development releases,583

as this type of release is meant to test new features. After confirming that new584

features are stable enough, and if the changes have low impact, they can be585

backported to stable releases.586

With this idea in mind, contributors should be aware of the versions of packages587

in different releases in order to plan possible feature backports.588

What happens in case the dependencies are not yet avail-589

able in the upcoming release, because590

the required packages are not fully ported?591

If the recommended process is followed, this should not happen, since develop-592

ment is done in the latest development release available. However, it is possible593

that in newer releases some required dependencies are no longer available. Un-594

der these circumstances, the package maintainer should address the issue by595

either:596

• Using an alternative dependency597

• Disabling or replacing the functionality that requires the dependency that598

is not available599

In case neither of these options are feasible, unfortunately the package will fail600

to build and hence won’t be available in the release.601

19



What is the latest point in time to deliver the stable ver-602

sion, etc..?603

Apertis release flow uses preview releases as the last point to introduce medium604

impact changes, in order to ensure stability of new stable releases. For stable605

releases it is expected that only bugfixes are introduced, again to ensure stability,606

with exceptions handled case by case.607

What can a package maintainer expect from the Apertis608

distribution maintainer in a release flow?609

Apertis is a Debian based distribution, and each Apertis release tracks one610

Debian release, from which it gets the majority of packages. Following this611

idea, package maintainers can get the relevant information from the resources612

available:613

• Apertis Dashboard: https://infrastructure.pages.apertis.org/dashboard/614

• Apertis Daily images: https://images.apertis.org/daily/615

• Debian:616

– https://packages.debian.org/stable/617

– https://packages.debian.org/testing/618

20

https://infrastructure.pages.apertis.org/dashboard/
https://images.apertis.org/daily/
https://packages.debian.org/stable/
https://packages.debian.org/testing/

	TL;DR
	Suitability of contributions
	Upstream First Policy
	Upstream Early, Upstream Often

	Extending Apertis
	Adding components to Apertis
	Dedicated Project Areas

	Extending existing components
	Adding support for new hardware
	Adding designs to Apertis
	Concept Design Document Template


	Other important bits
	Sign-offs
	Privileged processes
	Getting commit rights
	The role of maintainers
	Work across releases
	Hardware packs

	Contribution Template
	Frequently asked questions
	When is a good time to start offering package updates?
	Is it expected that the package maintainer checks the version updates of upcoming releases for
	What happens in case the dependencies are not yet available in the upcoming release, because
	What is the latest point in time to deliver the stable version, etc..?
	What can a package maintainer expect from the Apertis distribution maintainer in a release flow?


