
Robot Framework integration on LAVA

Contents1

Introduction 22

Robot framework architecture overview 33

Test Data . 34

Robot Framework . 45

Test Libraries & Test Tools . 46

System Under Test . 47

Robot Framework on LAVA 48

Integration approach 59

Test execution workflow 610

Framework operation 811

Impact analysis on Apertis distribution 912

Infrastructure . 913

Development environment . 1014

Test development . 1015

Testing . 1016

Summary 1017

Introduction18

The aim of this document is to provide a suitable solution for the integration of19

Robot Framework into the LAVA automated test infrastructure. LAVA doesn’t20

currently support triggering or executing Robot Framework test suites. Thanks21

to this integration the coverage test can be extended to cover different test areas22

by adding additional customized libraries and toolchains.23

LAVA1 (Linaro Automation and Validation Architecture) is a continuous inte-24

gration system for deploying operating systems onto physical and virtual hard-25

ware for running tests. Tests can be simple boot testing, bootloader testing and26

system level testing, although extra hardware may be required for some sys-27

tem tests. Results are tracked over time and data can be exported for further28

analysis.29

Robot Framework2 is open source software released under the Apache License30

2.0 and is a simple, yet powerful and easily extensible tool which utilizes the31

keyword driven testing approach. It uses a tabular syntax which enables creating32

test cases in a uniform way. All these features ensure that Robot Framework can33

1https://www.lavasoftware.org/
2https://robotframework.org/

2

https://www.lavasoftware.org/
https://robotframework.org/
https://www.lavasoftware.org/
https://robotframework.org/

be quickly used to automate test cases. The best benefit with Robot Framework34

for the users is that there is no need for using any sort of programming language35

for implementing and running tests.36

Integrating Robot Framework on LAVA infrastructure adds additional benefits37

of Robotic Process Automation (RPA), ATDD3 (Acceptance test–driven devel-38

opment) and also allows the use a wide range of open source libraries developed39

for automation testing.40

Robot framework architecture overview41

42

Test Data43

The Robot framework has a layered architecture. The top layer is the simple,44

powerful, and extensible keyword-driven descriptive language for testing and45

automation. This language resembles a natural language, is quick to develop, is46

easy to reuse, and is easy to extend.47

Test data, the first layer of the Robot framework is in a tabular format. Since48

the data is in a tabular format, maintaining the data is very easy. This test49

data is the input to Robot Framework, once it is received, it is processed and50

on execution reports and logs are generated. The report is in HTML and XML51

format and offers detailed information about every line that is executed as a52

part of the test case.53

3https://en.wikipedia.org/wiki/Acceptance_test-driven_development

3

https://en.wikipedia.org/wiki/Acceptance_test-driven_development
https://en.wikipedia.org/wiki/Acceptance_test-driven_development

Robot Framework54

Robot Framework is a generic, application and technology independent frame-55

work. The primary advantage of the Robot framework is that it is agnostic of56

the device under test (DUT). The interaction with the layers below the frame-57

work can be done using the libraries built-in or user-created that make use of58

application interfaces.59

Test Libraries & Test Tools60

A library in a Robot Framework terminology, extends the Robot Framework61

language with new keywords, and provides the implementation for these new62

keywords. Each Robot Framework library acts as glue between the high level63

language and low level details of the item being tested, or of the environment64

in which the item to be tested is present.65

Robot Framework has a rich set of built-in libraries e.g HTTP, FTP, SSH, and66

XML, as well as user interface and databases.67

System Under Test68

This is the actual DUT on which the testing activity is performed. It could69

either be a library or an app. Libraries act as an interface between the Robot70

Framework and the system under test. Hence, there is no way through which71

the framework can directly talk to the system under test. The Robot Framework72

supports various file formats namely HTML, TSV (Tab Separated Values), reST73

(Restructured Text), and Plain text. As per the official documentation of Robot74

framework, the plain text format is recommended.75

Robot Framework on LAVA76

There are two main constraints on automated tests setup on LAVA, the asyn-77

chronous way of updating results and user not having control over the job once78

it is submitted. Developers and CI pipeline can both submit jobs to LAVA,79

but they cannot interact with a job while it is running. The LAVA workflow80

defines the process of submitting a job, waiting for the job to be selected for81

execution, waiting for the job to complete it’s execution, and downloading of82

the test results.83

Considering the above constraints and the wide range of desired test areas, in-84

tegrating the Robot Framework with LAVA provides more chances to automate85

complex tests by making use of its open source libraries.86

The Robot Framework can add value to Apertis, but adding it to Apertis will87

involve developing and/or modifying Robot Framework libraries and developing88

a run-time compatibility layer for LAVA. The run-time compatibility layer for89

LAVA has two major objectives: keep testing environments as close as possible90

4

to production environments, and to adapt the execution of Robot Framework91

tests to suit the LAVA constraints.92

Integration approach93

A LAVA instance consists of two primary components masters and workers94

works as a [master-slave model](https://en.wikipedia.org/wiki/Master%E2%95

80%93slave_(technology), where the master controls one or more devices and96

serves as their communication hub.97

The worker is responsible for running the lava-worker daemon to start and mon-98

itor test jobs running on the dispatcher. Each master has a worker installed99

by default and additional workers can be added on separate machines, known100

as remote workers. The admin decides how many devices are assign to each101

worker. In large instances, it is common for all devices to be assigned to remote102

workers to manage the load.103

The simplest possible configuration is to run the master and worker components104

on a single machine, but for larger instances it can also be configured to support105

multiple workers controlling a larger number of attached devices in a multi node4106

model.107

There are three possible approaches available to integrate Robot Framework on108

LAVA:109

1. Integrating a standalone development setup inside the dispatcher.110

2. Introduce a different device type to enable standalone docker with Robot111

Framework instance112

3. Introducing a test:docker container to run a Robot Framework instance113

The first approach consists of creating a QEMU emulator with the Apertis SDK114

image and installing Robot Framework. In this approach, a user can run all115

automated tests related to the system and toolchain. Mainly this approach116

is to test the headless functionality which are part of development activities.117

However, running DUT related tests such as Fixed Function or HMI images is118

not feasible, therefore this approach is not meeting all the use cases of production119

readiness.120

The second approach consists of creating a separate device type on the LAVA121

instance which contains a test Docker container where robot framework runs122

under the worker context. This setup provides the benefits of isolation and123

security, but it includes the additional effort of maintaining a different device124

type on LAVA. Test suites would need to specifically mention the device-type125

along with the architecture to run the tests on this instance. An additional126

advantage is that each test suite execution will be run on an independent Docker127

container making parallel execution possible for different jobs, this approach128

4https://docs.lavasoftware.org/lava/multinode.html

5

https://en.wikipedia.org/wiki/Master%E2%80%93slave_(technology)
https://en.wikipedia.org/wiki/Master%E2%80%93slave_(technology)
https://en.wikipedia.org/wiki/Master%E2%80%93slave_(technology)
https://docs.lavasoftware.org/lava/multinode.html
https://docs.lavasoftware.org/lava/multinode.html

increases the isolation of running the test suites and handling the report, but129

increases memory overhead if too many devices are attached and simultaneously130

running.131

The third approach consists of introducing a test:docker login mechanism on132

the LAVA instance. This approach is completely developed and open sourced133

by Apertis team. Here, the job description should define the docker part by134

providing valid credential to pull the docker to run on dispatcher instance and135

execute the test steps mentioned on the test suits.136

137

After evaluating the above three approaches, the third approach is the best138

fit for integrating Robot Framework on LAVA as it provides relatively easy139

maintenance and feature customization.140

Test execution workflow141

Test cases and test suites can be developed using the developers editor of choice142

and these tests can be run manually on the Apertis SDK, or configured to be143

run on LAVA.144

Following workflow provide the steps to integrate Robot Framework tests and145

to be run on LAVA.146

Create a common group for all the Robot Framework tests running on LAVA147

under apertis-test-cases5/lava called group-robot-tpl.yaml as follows:148

5https://gitlab.apertis.org/tests/apertis-test-cases/

6

https://gitlab.apertis.org/tests/apertis-test-cases/
https://gitlab.apertis.org/tests/apertis-test-cases/

- test:149

timeout:150

minutes: 180151

namespace: rfw-test152

name: {{group}}-tests153

docker:154

image: "docker://registry.gitlab.apertis.org/infrastructure/apertis-155

docker-images/{{release_version}}-rfw-docker:latest"156

login:157

registry: "registry.gitlab.apertis.org"158

user: "gitlab-ci-token"159

password: "{{ '{{job.CI_JOB_TOKEN}}' }}"160

definitions:161

- repository: https://gitlab-ci-token:{{ '{{job.CI_JOB_TOKEN}}' }}@gitlab.apertis.org/tests/apertis-162

test-cases.git163

branch: 'apertis/v2023'164

history: False165

from: git166

name: robot-connman-tests167

path: test-cases/robot-connman.yaml168

parameters:169

DEVICE_IP: "$(lava-target-ip)"170

ROBOT_FRAMEWORK_CONNMAN_URL: |-171

https://gitlab-ci-token:{{ '{{job.CI_JOB_TOKEN}}' }}@gitlab.apertis.org/tests/robotframework.git172

This template provides the basic information and credentials for fetching and173

running the Robot Framework with Docker in LAVA. Tests can be added util-174

ising this template.175

7

Framework operation176

177

The above diagram shows the basic workflow of LAVA jobs using Robot Frame-178

work. A job will be created on the master daemon which specifies a suite of tests179

(T1 to T3), which DUT that the tests will be run on and the Apertis release180

plus image type which they should be run against.181

When it is time for it to run, the master daemon passes the job to the dispatcher182

with the required DUT. The dispatcher will launch a Robot Framework docker183

instance (J1 to J3) which will connect to the required DUT using the SCP184

and SSH protocols to copy required files to and from the DUT and execute185

commands on it, rather than copying the entire test suite and Robot Framework186

to the DUT and executing it from there. This has the advantage that minimal187

alterations will be made to the image that is being tested. The required test188

suite will be executed from within its docker environment, with each job running189

in its own fresh isolated docker environment, ensuring that it is not affected by190

content left from previous jobs.191

8

Once the test execution is completed, Robot Framework will generate a test192

report and a number of logs which will be copied from the docker instance and193

shared with the LAVA server. Once this is done the docker instance will be194

cleaned up. A summary of the testing results and the test reports/logs will be195

made available via the dashboard6.196

It is likely that Robot Framework tests will have dependencies which are required197

for the tests to run correctly. Where these dependencies form part of the test198

harness in the docker instance (for example, libraries to drive peripherals such199

as a touch simulator to simulate touch events for HMI tests), these should form200

part of the docker definition and installed from the Apertis repositories when the201

docker instance is created. Where these dependencies need to be available on the202

DUT, they either need to be preinstalled as part of the image or are required to203

be added to the image during testing (such as by applying an overlay on OSTree204

based images).205

When run, the Robot Framework generates three files in its output directory:206

• output.xml: An XML formatted record of the test execution, including207

data such as test names, statuses, messages, and tags.208

• log.html: A detailed HTML formatted log of your test execution, which209

includes timestamps, keywords, arguments, screenshots, and console out-210

put.211

• report.html: An HTML formatted summary of your test execution, which212

shows the overall statistics, test cases run and errors raised.213

Currently the LAVA server is not processing any of these Robot Framework test214

reports, it only tracks the test status. We plan to add a data parser and provide215

the parsed data to LAVA. The Robot Framework reports will also be stored and216

a link provided to them from the LAVA report.217

The Robot Framework only generates the status report at the end of test execu-218

tion. To allow for more real time tracking of the testing, the Robot Framework219

provides a listener mechanism which can be used to provide fine grain moni-220

toring of each individual tests execution. A listener script should be written221

to interface between the Robot Framework and LAVA and made available as222

part of the main test scripts. This integration will provide greater integration223

between the Robot Framework and the existing LAVA infrastructure and will224

be very beneficial when debugging failing tests.225

Impact analysis on Apertis distribution226

Infrastructure227

Integrating Robot Framework on existing Apertis infrastructure will requires228

the following changes :229

6https://qa.apertis.org/

9

https://qa.apertis.org/
https://qa.apertis.org/

• Improvement of LAVA workers to enable them to run docker instances.230

• Configure pipelines to ensure the capture of all the Robot Framework231

results.232

• Extend the Apertis test report site7 to show the Robot Framework results233

Development environment234

The current development environment integrates Robot Framework with all its235

standard libraries, along with the SSH library as part of the SDK distribution.236

Using the Apertis SDK a developer can write Robot Framework test cases to237

run on the SDK and DUTs running Fixed Function or HMI images.238

Test development239

• Impact on Apertis development is that we have start developing new test240

suites for robot framework.241

• Start developing new yaml files which helps in executing the robot test242

suites from containers243

• Apertis tests needs to rewrite the existing LAVA test job to execute the244

robot test suites245

Testing246

• With approaches mentioned above we can keep the existing scripts as they247

are and start executing tests defined with the new Robot Framework test248

suites which will help to improve the test coverage.249

Summary250

The integration of the Robot Framework into the Apertis, enables tests to be251

written using this simple, yet powerful and easily extensible testing framework252

for Apertis whilst also taking advantage to the many features provided by the253

Apertis test framework:254

• End to End workflow255

– LAVA pipelines can take care of all test stages: control of board256

power; flashing & booting images; loading tests; running the tests;257

and reporting test results.258

– Tests can be run in parallel on different targets, reducing test cycle259

time, when compared with manual tests run by a limited test team.260

– Devices can be reserved for specific tests or specific users.261

• Internet facing Web Service262

7https://qa.apertis.org

10

https://qa.apertis.org
https://qa.apertis.org

– One centrally hosted and maintained front end service which can be263

utilised by multiple teams, each providing worker systems connected264

to their specific DUTs.265

– Internet connectivity enables collaboration with external partners.266

– Remote management of devices. Many maintenance tasks can be267

completed without physical access to DUTs.268

– Remote access to users for running tests, viewing logs & reports.269

– Role based access permissions allowing granular control over access270

to functionality and specific DUTs.271

– Access to mail notifications and alerts.272

• Sharing of physical assets between multiple software projects273

– DUTs can be shared between multiple projects, such as teams fo-274

cusing on different operating systems or teams focusing on different275

software stacks within a larger operating system can schedule jobs to276

be run on shared hardware, reducing the number of physical devices277

needed for testing across an organisation278

• Continuous testing279

– Periodic triggering of test runs against DUTs as part of continuous280

testing to ensure acceptable operation as system evolves.281

– Reuse of common tests between integration and continuous testing282

regimes avoiding duplication of effort.283

• Handles inconsistency.284

– Retry mechanisms mitigate against test failures due to temporary285

failure of ancillary operations, such as transient download failures.286

• Inbuilt reporting dashboard287

– Insight full metrics available in the inbuilt dashboard.288

– Access to full test reports and test definitions.289

– Access to test logs including timing metrics.290

11

	Introduction
	Robot framework architecture overview
	Test Data
	Robot Framework
	Test Libraries & Test Tools
	System Under Test

	Robot Framework on LAVA
	Integration approach
	Test execution workflow
	Framework operation
	Impact analysis on Apertis distribution
	Infrastructure
	Development environment
	Test development
	Testing

	Summary

