
Cloud-friendly APT repository publishing

Contents1

Why we need a new APT publisher 22

Alternatives to reprepro 33

Aptly . 34

Pulp . 45

Conclusion 56

Implementation plan . 67

Why we need a new APT publisher8

Apertis relies on OBS1 for building and publishing binary packages. However,9

upstream OBS provides an APT publisher based on dpkg-scanpackages, which10

is not suitable for a project the scale of Apertis, where a single OBS project11

contains a lot of packages.12

Therefore, our OBS instance uses a custom publisher based on reprepro, but it13

is still subject to some limitations that are now more noticeable as the scale of14

Apertis has grown considerably:15

• It purely acts on the events created by OBS, which means that if they do16

not get successfully processed immediately the repository will go out-of-17

sync18

• The repositories are hosted on the same machine as OBS, and there is19

no way for external tools to interact with them; for instance there is no20

way to request the creation of snapshots with a different strategy than the21

current one of creating a snapshot for every single change22

• When branching a release reprepro has to be invoked manually to initialize23

the exported repositories24

• When branching a release the OBS publisher has to be manually disabled25

or it will cause severe lock contention with the manual invocation men-26

tioned above27

• Removing a package requires manual intervention28

• Snapshots are not supported natively29

• Cloud storage is not supported30

In order to address these shortcomings, we need to develop a new APT publisher31

(based on a backend other than reprepro) which should be capable of:32

• Publishing the whole Apertis release on non-cloud storage33

• Publishing the whole Apertis release on cloud storage34

• Natively supporting snapshots35

1https://apertis-website-0b3586.pages.apertis.org/architecture/distribution/workflow-
guide/

2

https://apertis-website-0b3586.pages.apertis.org/architecture/distribution/workflow-guide/
https://apertis-website-0b3586.pages.apertis.org/architecture/distribution/workflow-guide/
https://apertis-website-0b3586.pages.apertis.org/architecture/distribution/workflow-guide/

• Automatic branching of an Apertis release, not requiring manual interven-36

tion on the APT publisher37

• Using a synchronization strategy to ensure that OBS and APT repositories38

automatically tend to consistent state:39

– removing a package from OBS should trigger the removal of the pack-40

age from the APT repositories as well41

– once a publishing failure is resolved (network issues, etc.) the pub-42

lisher should recover automatically43

Alternatives to reprepro44

The Debian wiki includes a page2 listing most of the software currently available45

for managing APT repositories. However, a significant portion of those tools46

cover only one of the following use-cases:47

• managing a small repository, containing only a few packages48

• replicating a (sometimes simplified) official Debian infrastructure49

A few of the mentioned tools, however, are aimed at managing large-scale repos-50

itories within a custom infrastructure, and offer more advanced features which51

could be of interest to Apertis. Those are:52

• aptly53

• pulp54

Laniakea3 was also considered, but as it’s meant to work within a full Debian-like55

infrastructure and doesn’t offer any cloud-based storage option, it was dismissed56

as well.57

Extended search did not point to other alternative solutions covering our use-58

case.59

Aptly60

Aptly4 is a complete solution for Debian repository management, including61

mirroring, snapshots and publication.62

It uses an internal, locally-stored package pool and database, and provides cloud63

storage options for publishing ready-to-serve repositories. Aptly also provides a64

full-featured CLI client and an almost complete REST API. It could therefore65

run either directly on the same server as OBS, or on a different one. The REST66

API misses mirroring support for now, so these features can only be used from67

the command-line client.68

Package import and repository publication are separate operations:69

2https://wiki.debian.org/DebianRepository/Setup
3https://github.com/lkhq/laniakea
4https://www.aptly.info/

3

https://wiki.debian.org/DebianRepository/Setup
https://github.com/lkhq/laniakea
https://www.aptly.info/
https://wiki.debian.org/DebianRepository/Setup
https://github.com/lkhq/laniakea
https://www.aptly.info/

• The package is first imported to the internal package pool and associated70

to the requested repository in a single operation71

• When all required packages are imported, the repository can be published72

atomically73

Repositories can be published both to the local filesystem and to a cloud-based74

storage service (Amazon S3 or OpenStack Swift).75

Moreover, Aptly identifies each package using the (name, version, architecture)76

triplet: by doing so, it allows keeping multiple versions of the same package in77

a single repository, while reprepro kept only the latest package version. This78

requires additional processing for Aptly to replicate the current behavior.79

Finally, attention should be paid to regularly cleaning up the database and80

package pool: unused packages are kept in the pool, even when obsoleted by81

a newer version and/or removed from all repositories, until a database cleanup82

is triggered. A daily cleanup job should be sufficient to make sure the internal83

pool doesn’t carry unused packages over time.84

Pros85

• tailored for APT repository management: includes some interesting fea-86

tures such as multi-component publishing87

• command-line or REST API interface (requires an additional HTTP server88

for authentication and permissions management)89

Cons90

• uses a local package pool which can grow large if a lot of packages and91

versions are used simultaneously92

• requires additional processing to keep only the latest version of each pack-93

age94

• needs regular database cleanups95

Pulp96

Pulp5 is a generic solution for storing and publishing binary artifacts. It uses97

plugins for managing specific artifact types, and offers a plugin for DEB pack-98

ages.99

It offers flexible storage options, including S3 and Azure, which can also be ex-100

tended as the storage backend is built on top of django-storages, which provides101

a number of additional options.102

Pulp can be used through a REST API, and provides a command-line client103

for wrapping a significant portion of the API calls. Unfortunately, the DEB104

5https://pulpproject.org/

4

https://pulpproject.org/
https://pulpproject.org/

plugin isn’t handled by this client, meaning only the REST API is available for105

managing those packages.106

Its package publication workflow involves several Pulp objects:107

• the binary artifact (package) itself108

• a Repository109

• a Publication110

• a Distribution111

Each Distribution is tied to a single Publication, which is itself tied to a specific112

Repository version. As each Repository modification increments the Repository113

version, adding or removing a package involves the following steps:114

• add or remove the package from the Repository115

• retrieve the latest Repository version116

• create a new Publication for this repository version117

• update the Distribution to point to the new Publication118

• remove the previous Publication119

This workflow feels too heavy and error-prone when working with a distribution120

the scale of Apertis, where lots of packages are often added or updated. Addi-121

tionally, each Distribution must have its own base URL, preventing publishing122

multiple Apertis versions and components in the same repository.123

Pros124

• generic artifacts management solution: can be re-used for storing non-125

package artifacts too126

• flexible storage options127

Cons128

• complex workflow for publishing/removing packages129

• unable to store multiple repositories on the same base URL130

• can only be used through REST API131

Conclusion132

Based on the above software evaluation, aptly seems to be the more appropriate133

choice:134

• supports snapshots135

• can make use of both local and cloud-based storage for publishing reposi-136

tories137

• provides useful features aimed specifically at APT repository management138

• allow publishing several repositories and components to a single endpoint139

5

Its main shortcoming (locally-stored package pool) can be addressed by imple-140

menting an option for storing the pool on cloud-based storage. This would be141

the most efficient approach when compared to the alternative (hosting aptly on142

a remote server and using it through the REST API).143

Moreover, the following points must be kept in mind when implementing the144

publisher:145

• aptly doesn’t remove previous versions of an updated package; although146

this behavior could be implemented in aptly itself, it will be less effort to147

have the publisher handle removing obsoleted packages148

• the package pool will keep growing as new and updated packages are149

added, it should therefore be cleaned up on a regular basis by triggering150

database cleanups151

• publishing large repositories with aptly can take a long time; decoupling152

the action of adding a package from the actual repository publication153

would be a useful optimization, however it would be outside the scope of154

the initial implementation155

Finally, aptly is actively maintained upstream, with a new team of developers156

having taken over its development last year. The chances of it being abandoned157

and/or replaced with a different project are therefore very low.158

Implementation plan159

• Update OBS to a more recent upstream version: this will provide a more160

up-to-date base on which we can develop and upstream the new APT161

publisher162

• Start with a prototype, local-only version capable of:163

– adding a package to a (manually created) local repository164

– publishing the repository to local storage165

– deleting a package from the repository when removing it from OBS166

• Implement automated branching and repository creation for new OBS167

projects168

• Automate periodic database cleanups169

• Add configuration options for publishing to cloud-based storage170

• Implement cloud-based storage options for aptly’s internal package pool171

6

	Why we need a new APT publisher
	Alternatives to reprepro
	Aptly
	Pulp

	Conclusion
	Implementation plan

