
Long term reproducibility

Contents1

Background 22

Apertis artifacts and release channels 33

Reproducible build environments . 54

Build recipes . 65

Packages and repositories . 76

External artifacts . 87

Main artifacts and metadata . 98

Package builds . 109

Recommendations for product teams 1010

Implementation plan 1111

Snapshot the package archive . 1112

Version control external artifacts . 1113

Link to the tagged sources . 1114

How to reproduce a release build and customize a package 1115

Reproduce the build . 1116

Customizing the build . 1217

Example 1: OpenSSL security fix 2 years after release v1.0.0 1218

Getting started with Apertis: one year before release 1.0.0 1319

Creating the list of golden components: the day of the release 1.0.0 . . 1420

Using the golden components two years after release 1.0.0: Creating21

the new release . 1622

Reproduce the build . 1623

Customizing the build . 1724

Background25

One of the main goals for Apertis is to provide teams the tools to support their26

products for long life cycles needed in many industries, from civil infrastructure27

to automotive.28

This document discusses some of the challenges related to long-term support29

and how Apertis addresses them, with particular interest in reliably reproducing30

builds over a long time span.31

Apertis addresses that need by providing stable release channels as a platform for32

products with a clear trade-off between leading-edge functionality and stability.33

Apertis encourages products to track these channels closely to deploy updates34

on a regular basis to ensure important fixes reach devices in a timely manner.35

Stable release channels are supported for at least two years, and product teams36

2

have three quarters of overlap to rebase to the next release before the old one37

reaches end of life. Depending on the demand, Apertis may extend the support38

period for specific release channels.39

However, for debugging purposes it is useful to be able to reproduce old builds40

as closely as possible. This document describes the approach chosen by Apertis41

to address this use case.42

For our purposes bit-by-bit reproducibility is not a goal, but the aim is to be43

able to reproduce builds closely enough that one can reasonably expect that no44

regressions are introduced. For instance some non essential variations involve45

things like timestamps or items being listed differently in places where order46

is not significant, cause builds to not be bit-by-bit identical while the runtime47

behavior is not affected.48

Apertis artifacts and release channels49

As described in the release flow1 document, at any given time Apertis has mul-50

tiple active release channels to both provide a stable foundation for product51

teams and also give them full visibility on the latest developments.52

Each release channel has its own artifacts, the main one being the deployable53

images2 targeting the reference hardware platforms3, which get built by mixing:54

• reproducible build environments55

• build recipes56

• packages57

• external artifacts58

These inputs are also artifacts themselves in moderately complex ways:59

• build environments are built by mixing dedicated recipes and packages60

• packages are themselves built using dedicated reproducible build environ-61

ments62

However, the core principle for maintaining multiple concurrent release channels63

is that each channel should have its own set of inputs, so that changes in a64

channel do not impact other channels.65

Even within channels sometimes it is desirable to reproduce a past build as66

closely as possible, for instance to deliver a hotfix to an existing product while67

minimizing the chance of introducing regressions due to unrelated changes. The68

Apertis goal of reliable, reproducible builds does not only help developers in69

their day-to-day activities, but also gives them the tools to address this specific70

use-case.71

1https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/
2https://apertis-website-0b3586.pages.apertis.org/policies/images/
3https://www.apertis.org/reference_hardware/

3

https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/
https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://www.apertis.org/reference_hardware/
https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/
https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://www.apertis.org/reference_hardware/

The first step is to ensure that all the inputs to the build pipeline are version-72

controlled, from the pipeline definition itself to the package repositories and to73

any external data.74

To track which input got used during the build process the pipeline stores an75

identifier for each of them to uniquely identify them. For instance, the pipeline76

saves all the Git commit hashes, Docker image hashes, and package versions in77

the output metadata.78

c564448 ← v2020:latest
cf381b5
919aaa7

Docker images for the build env

645e418 ← apertis/v2020
4920f99
cf6bfb7

Image recipes

20200309T115300Z ← v2020
20200309T091221Z
20200308T181534Z

APT repositories

b602ab1 ← apertis/v2020
34920f9
7c3842g

External resources
via Git-LFS

Build pipeline
with no overrides

Checkout recipes

Create build environment

Populate rootfs

Add extra data (e.g. demo music)

↓

↓

↓

↓

Output

Artifacts: ospacks, images...

Metadata:
meta/build-env.txt
/.pkglist.gz
/.filelist.gz

-

Capture build-env metadata

RECIPE_COMMIT=645e418
DOCKER_IMAGE=…@sha256:c564448
APT_SNAPSHOT=20200309T115300Z
MEDIA_REF=b602ab1

↓

-

79

While the pipeline defaults to using the latest version available in a specific80

channel for each input, it is possible to pin specific version to closely reproduce81

a past build using the identifiers saved in its metadata.82

4

34980ba ← v2020:latest
c564448
cf381b5

Docker images for the build env

ba983f1 ← apertis/v2020
283ba2c
645e418

Image recipes

20200412T122111Z ← v2020
20200411T161545Z
20200309T115300Z

APT repositories

b602ab1 ← apertis/v2020
34920f9
7c3842g

External resources
via Git-LFS

Build pipeline
setting BUILD_ENV_OVERRIDE

Checkout recipes

Create build environment

Populate rootfs

Add extra data (e.g. demo music)

↓

↓

↓

Output

Artifacts: ospacks, images...

Metadata:
meta/build-env.txt
/.pkglist.gz
/.filelist.gz

Override build-env metadata

RECIPE_COMMIT=645e418
DOCKER_IMAGE=…@sha256:c564448
APT_SNAPSHOT=20200309T115300Z
MEDIA_REF=b602ab1

↓

83

Reproducible build environments84

A key challenge in the long term maintenance of a complex project is the ability85

to reproduce its build environment in a consistent way. Failing to do so means86

that undetected differences across build environments may introduce hard to87

debug issues or that builds may fail entirely depending on where/when they get88

triggered.89

In some cases, losing access to the build environment effectively means that a90

project can’t be maintained anymore, as no new build can be made.91

To be able to avoid these issues as much as possible, Apertis makes heavy use92

of isolated containers based on Docker images493

All the Apertis build pipelines run in containers with minimal access to external94

resources to keep the impact of the environment as low as possible.95

For the most critical components, even the container images themselves are96

4https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker

5

https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/#building-in-docker

created using Apertis resources, minimizing the reliance on any external service97

and artifacts.98

For instance, the apertis-v2020-image-builder container image provides the re-99

producible environment to run the pipelines building the reference image arti-100

facts for the v2020 release, and the apertis-v2020-package-source-builder con-101

tainer image is used to convert the source code stored in GitLab in a format102

suitable for building on OBS.103

Each version of each image is identified by a hash, and possibly by some tags.104

As an example the :latest tag points to the image which gets used by default for105

new builds. However, it is possible to retrieve arbitrary old images by specifying106

the actual image hash, providing the ability to reliably reproduce arbitrarily old107

build environments.108

To prevent space consumption to grow unboundedly, images that are not pointed109

by any tag are periodically garbage-collected and removed. To ensure that the110

needed images are preserved, product teams must ensure that there’s at least111

one tag pointing to them.112

Each container image build should be tagged with its build id, for instance113

:build-20200103.0112 at build time; at release time, the container image used to114

build the artifacts should be additionally tagged with a release tag, for instance115

:v2020.3 for the v2020.3 release.116

Cleanup policies5 must be set up to make the build tags expire after some time,117

to ensure that the unused container images can be reclaimed during garbage-118

collection.119

To further make build environments more reproducible, care can be taken to120

make their own build process as reproducible as possible. The same concerns121

affecting the main build recipes affect the recipes for the Docker images, from122

storing pipelines in Git, to relying only on snapshotted package archives, to123

taking extra care on third-party downloads, and the following sections address124

those concerns for both the build environments and the main build process.125

Build recipes126

The process to the reference images is described by textual, YAML-based Debos127

recipes6 Git repository, with a different branch for each release channel.128

The textual, YAML-based GitLab-CI pipeline definitions then control how the129

recipes are invoked and combined.130

Relying on Git for the definition of the build pipelines make preserving old131

versions and tracking changes over time trivial.132

5https://docs.gitlab.com/ee/user/packages/container_registry/reduce_container_registr
y_storage.html#cleanup-policy

6https://gitlab.apertis.org/infrastructure/apertis-image-recipes/

6

https://docs.gitlab.com/ee/user/packages/container_registry/reduce_container_registry_storage.html#cleanup-policy
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/
https://docs.gitlab.com/ee/user/packages/container_registry/reduce_container_registry_storage.html#cleanup-policy
https://docs.gitlab.com/ee/user/packages/container_registry/reduce_container_registry_storage.html#cleanup-policy
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/

Rebuilding the v2020 artifacts locally is then a matter of checking out the recipes133

in the apertis/v2020 branch and launching debos from a container based on the134

apertis-v2020-image-builder container image.135

By forking the repository on GitLab the whole build pipeline can be reproduced136

easily with any desired customization under the control of the developer.137

Packages and repositories138

The large majority of the software components shipped in Apertis are packaged139

using the Debian packaging format, with the source code stored in GitLab that140

OBS uses to generate prebuilt binaries to be published in a APT-compatible141

repository.142

Separate Git branches and OBS projects are used to track packages and versions143

across different parallel releases, see therelease flow7 document for more details.144

For instance, for the v2020 stable release:145

• the apertis/v2020 Git branch tracks the source revisions to be landed in146

the main OBS project147

• the apertis:v2020:{target,development,sdk} projects build the stable pack-148

ages149

• the deb https://repositories.apertis.org/apertis/ v2020 target develop-150

ment sdk entry points apt to the published packages151

For most of the time the stable channel is frozen and updates are exclusively152

delivered through the dedicated channels described below.153

Updates are split between small security fixes with low chance of regressions154

and updates that also address important but non security-related issues which155

usually benefit from more testing.156

For security updates:157

• the Git branch is apertis/v2020-security158

• the OBS projects are apertis:v2020:security:{target,development,sdk}159

• deb https://repositories.apertis.org/apertis/ v2020-security target de-160

velopment sdk is the APT repository161

Similarly, for the general updates:162

• the Git branch is apertis/v2020-updates163

• the OBS projects are apertis:v2020:updates:{target,development,sdk}164

• deb https://repositories.apertis.org/apertis/ v2020-updates target de-165

velopment sdk is the APT repository166

On a quarterly basis the stable channel get unfrozen and all the updates get167

rolled in it, while the security and updates channel get emptied.168

7https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/

7

https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/
https://apertis-website-0b3586.pages.apertis.org/policies/release-flow/

This approach provides to downstreams and product teams a stable basis to169

build their product without hard to control changes. Products are recommended170

to also track the security channel for timely fixes, enabling product teams to171

easily identify and review the changes shipped through it.172

The updates channel is not directly meant for production, but it offers to product173

teams a preview of the pending changes to let them proactively detect issues174

before they reach the stable channel and thus their products.175

While the stability of the release channels is suitable for most use-cases, some-176

times it is desirable to reproduce an old build as close to the original as possible,177

ignoring any update regardless of their importance.178

To accomplish that goal the package archives are snapshotted regularly, storing179

their full history. The image build pipeline accepts an optional parameter to use180

a specific snapshot rather than the latest contents. This results in the execution181

installing exactly the same packages and versions as the original run, regardless182

of any changes that landed in the archive in the meantime.183

To use a snapshot it is sufficient to change the APT mirror address,184

for instance going from https://repositories.apertis.org/apertis/ to185

https://repositories.apertis.org/apertis/20200305T132100Z and similarly186

for product-specific repositories.187

Every time an update is published from OBS a snapshot is created, tracking the188

full history of each archive. More advanced use-cases can be addressed using189

the optional Aptly HTTP API8.190

External artifacts191

While the packaging pipeline effectively forbids any reliance on external artifacts,192

the other pipelines in some case include components not under the previously193

mentioned systems to track per-release resources.194

For instance, the recipes for the HMI-enabled images include a set of example195

media files retrieved from a multimedia-demo.tar.gz file hosted on an Apertis196

web server.197

Another example is given by the apertis-image-builder recipe checking out De-198

bos directly from the master branch on GitHub.199

In both cases, any change on the external resources impacts directly all the200

release channels when building the affected artifacts.201

A minimal solution for multimedia-demo.tar.gz would be to put a version in its202

URL, so that recipes can be updated to download new versions without affecting203

older recipes. Even better, its contents could be put in a version tracking tool,204

for instance using the Git LFS support available on GitLab.205

8https://www.aptly.info/doc/api/

8

https://www.aptly.info/doc/api/
https://www.aptly.info/doc/api/

In the Debos case it would be sufficient to encode in the recipe a specific revision206

to be checked out. A more robust solution would be to use the packaged version207

shipped in the Apertis repositories.208

Main artifacts and metadata209

The purpose of the previously described software items is to generate a set210

of artifacts, such as those described on the images9 page. With the artifacts211

themselves a few metadata entries are generated to help tracking what has been212

used during the build.213

In particular, the pkglist files capture the full list of packages installed on each214

artifacts along their version. The filelist files instead provide basic information215

about the actual files in each artifacts.216

With the information contained in the pkglist files it is possible to find the exact217

binary package version installed and from there find the corresponding commit218

for the sources stored in GitLab by looking at the matching Git tag.219

The build-env.txt file instead captures metadata about the build environment.220

For instance, here’s a sample from the pipeline that built the v2021dev3.0 re-221

lease10:222

PIPELINE_VERSION=20200921.1223223

DOCKER_IMAGE=registry.gitlab.apertis.org/infrastructure/apertis-docker-224

images/v2021dev3-image-builder@sha256:50724ec3105f9ea840fa70b536768148722ae59e09b7861a9051ad1397b57f64225

RECIPES_COMMIT=b4f1c5c85bd4603f2d9158f513c142a77a3c65c3226

RECIPES_URL=https://gitlab.apertis.org/infrastructure/apertis-image-recipes/227

PIPELINE_URL=https://gitlab.apertis.org/infrastructure/apertis-image-228

recipes/-/pipelines/157555229

UPLOAD_ROOT=/srv/images/public230

IMAGE_URL_PREFIX=https://images.apertis.org231

With the RECIPES_URL and RECIPES_COMMIT variables it is possible to find the exact232

revision of the recipes in the apertis-image-recipes project11233

The DOCKER_IMAGE variable captures the exact revision of the Docker image by234

explicitly using the digest syntax, to ensure the build environment can be re-235

produced perfectly. Care must be taken to ensure the retention policy of the236

container registry preserves the used image for long enough. For the Apertis237

reference image recipes we currently use a rather aggressive cleanup policy, only238

preserving images built during the past week but this can be easily customized239

from the GitLab UI12. Improving the preservation of the images used for each240

release is under discussion.241

9https://apertis-website-0b3586.pages.apertis.org/policies/images/
10https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
11https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603

f2d9158f513c142a77a3c65c3
12https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy

9

https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy
https://apertis-website-0b3586.pages.apertis.org/policies/images/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ce/user/packages/container_registry/#cleanup-policy

The metadata above can then be used to reproduce the build.242

The implementation plan section defines the remaining planned improvements.243

Package builds244

Package builds happen on OBS which does not have snapshotting capabilities245

and always builds every package on a clean, isolated environment built using246

the latest package versions for each channel.247

Since the purposes taken in account in this document do not involve large scale248

package rebuilds, it is recommended to use the SDK images and the deviants249

in combination with the snapshotted APT archives to rebuild packages in an250

environment closely matching a past build.251

Recommendations for product teams252

Builds for production should:253

1. pick a specific stable channel (for instance, v2020)254

2. version control the build pipelines using branches specific to a stable chan-255

nel256

3. in the build pipeline, use the latest Docker image for that specific channel,257

for instance v2020-image-builder or a product-specific downstream image258

based on that259

4. use the main OBS projects for the release channel, for instance aper-260

tis:v2020:target, with the security fixes from apertis:v2020:security:target261

layered on top262

5. store the product-specific packages in OBS projects targeting a specific263

release channel, layered on top of the projects mentioned in the previous264

point265

6. use the matching APT archives during the image build process266

7. deploy fixes from the stable channels as often as possible267

Development builds are encouraged to also use the contents from the non-268

security updates (for instance, apertis:v2020:updates:target) to get a preview269

of non time-critical updates that will folded in the main archive on a quarterly270

basis.271

The assumption is that products will use custom build pipelines tailored to the272

specific hardware and software needs of the product. However, product teams273

are strongly encouraged to reuse as much as possible from the reference Apertis274

build pipelines using the GitLab CI and Debos include mechanisms, and to fol-275

low the same best-practices about metadata tracking and build reproducibility276

described in this document.277

10

Implementation plan278

Snapshot the package archive279

To ensure that build can be reproduced, it is fundamental to make the same280

contents available from the package archive.281

The most common approach, also employed in Debian upstream, is to take282

snapshots of the archive contents so that subsequent builds can point to the283

snapshotted version and retrieve the exact package versions originally used.284

To provide the needed server-side support, the archive manager need to be285

switched to the aptly archive manager as it provides explicit support for snap-286

shots. The build recipes then need to be updated to capture the current snapshot287

version and to be able to optionally specify one when initiating the build.288

Due to the way APT works, the increase in storage costs for the snapshot is289

small, as the duplication is limited to the index files, while the package contents290

are deduplicated.291

Version control external artifacts292

External artifacts like the sample multimedia files need to be versioned just like293

all the other components. Using Git LFS and Git tags would give fine control294

to the build recipe over what gets downloaded.295

Link to the tagged sources296

The package name and package version as captured in the pkglist files are297

sufficient to identify the exact sources used to generate the packages installed298

on each artifacts, as they can be used to identify an exact commit.299

However, the process can be further automated by providing explicit hyperlinks300

to the tagged revision on GitLab.301

How to reproduce a release build and customize302

a package303

Reproduce the build304

1. Open the folder containing the build artifacts, for instance v2021dev3.0/13305

2. Find the build-env.txt metadata, for instance meta/build-env.txt14306

3. Find the project hosting the recipes with the RECIPES_URL variable in build-307

env.txt308

13https://images.apertis.org/release/v2021dev3/v2021dev3.0/
14https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt

11

https://images.apertis.org/release/v2021dev3/v2021dev3.0/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt
https://images.apertis.org/release/v2021dev3/v2021dev3.0/
https://images.apertis.org/release/v2021dev3/v2021dev3.0/meta/build-env.txt

4. On GitLab, fork15 the recipes project309

5. Create a new branch16 in the recipes repository pointing to the commit310

saved in the RECIPES_COMMIT field of build-env.txt, for instance commit311

b4f1c5c85bd4603f2d9158f513c142a77a3c65c317312

6. Go to Pipelines → Run Pipeline page on GitLab to execute a CI pipeline18313

7. Configure a variable19 of type File named BUILD_ENV_OVERRIDE314

8. Paste the contents of build-env.txt there315

9. Be careful with PIPELINE_VERSION: to avoid overwriting an existing build it316

is recommended to set a custom one317

10. Run the pipeline318

When the pipeline completes, the produced artifacts should closely match the319

original ones, albeit not being bit-by-bit identical.320

Customizing the build321

On the newly created branch in the forked recipe repository, changes can be322

committed just like on the main repository.323

For instance, to install a custom package:324

1. Check out the forked repository325

2. Edit the relevant ospack recipe to install the custom package, either by326

adding a custom APT archive in the /etc/apt/sources.list.d folder if avail-327

able, or retrieving and installing it with wget and dpkg (small packages can328

even be committed as part of the repository to run quick experiments329

during development)330

3. Commit the results and push the branch331

4. Execute the pipeline as described in the previous section332

Example 1: OpenSSL security fix 2 years after333

release v1.0.0334

Today a product team makes the official release of version 1.0.0 of their software335

that is based on Apertis. Two years from now a critical security vulnerability336

will be found and fixed in OpenSSL. How can the product team issue a new337

release two years from now with the only change being the fix to OpenSSL?338

It is important for product teams to consider their future requirements at the339

point they make a release. To ensure bug and security fixes can be deployed340

15https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-
fork

16https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
17https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603

f2d9158f513c142a77a3c65c3
18https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
19https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-

the-ui

12

https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html#creating-a-fork
https://docs.gitlab.com/ee/gitlab-basics/create-branch.html
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://gitlab.apertis.org/infrastructure/apertis-image-recipes/commit/b4f1c5c85bd4603f2d9158f513c142a77a3c65c3
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui
https://docs.gitlab.com/ee/ci/variables/README.html#create-a-custom-variable-in-the-ui

with minimal impact on users a number of artifacts need to be preserved from341

the initial release:342

1. The image recipes343

2. The Docker images used as build environment344

3. The APT repositories345

4. External artifacts346

Getting started with Apertis: one year before release 1.0.0347

Good news! A product team has decided to use Apertis as platform for their348

product. At this stage there are a few recommendations on how to get started349

that will make it easier to use Apertis long term reproducibility features.350

The product team needs control over their software releases, and is important351

to decouple their releases from Apertis. One important objective is to give the352

product team control over importing changes from Apertis, such as package353

updates. We recommend using release channels for that.354

A product team can have multiple release channels, each reflecting what is355

deployed for a specific product. And because release channels are independent356

and parallel deliveries, a single product may even have multiple release channels,357

for instance a stable channel and a development one.358

In turn each product release channel is based on an Apertis release chan-359

nel. As an hypothetical example the automotive product team may have an360

automotive/cluster-v1 release channel for delivering stable updates to their361

cluster product, and an automotive/cluster-v2 release channel for development362

purposes, both based on the same apertis/v2020 release channel.363

Git repositories need to use a different branch for each release channel, and each364

release channel has its own set of projects on OBS. However only the components365

that the product team need to customize have to be branched or forked. To366

maximize reuse, it is expected that the bulk of packages used by every product367

team will come directly from the main Apertis release channels.368

1. What: Create a dedicated release channel369

2. Where: GitLab and OBS370

3. How: Create release channel branches in each Git repository that diverges371

from the ones provided by Apertis; set up OBS projects matching those372

release channels to build the packages373

In this way the product team has complete control on the components used to374

build their products:375

• Source code for all packages is stored on GitLab with full development376

history377

• Compiled binary packages are tracked by the APT archive snapshotting378

system for both the product-specific packages and the packages in the379

main Apertis archive.380

13

The previous step took care of the Apertis layer of the software stack, but there381

is one important set of components missing: the product team software. We382

suggest that product teams use one of Apertis recommended ways for shipping383

software which consists of using .deb packages or Flatpaks. For this example384

we are going to use .deb packages.385

While there are multiple ways of handling product team specific software, for386

this example we are going to recommend the product team to create a new APT387

suite and a few APT components, and host them on the Apertis infrastructure.388

We will call the new suite cluster-v1. The list of APT repositories will then be:389

deb https://repositories.apertis.org/apertis/ v2020 target development sdk390

deb https://repositories.apertis.org/automotive/ cluster-v1 target391

For reference, in APT terminology20 both v2020 and cluster-v1 are suites or392

distributions, and target, development, and sdk are components.393

The steps are:394

1. What: Create new APT suite and APT components for the product team395

2. Where to host: Apertis infrastructure396

Creating the list of golden components: the day of the397

release 1.0.0398

As we mentioned earlier each component is identified by a hash, and it is also399

possible to create tags. We recommend using hashes for identification of specific400

revisions because hashes are immutable. Tags can also be used, but we recom-401

mend careful evaluation as most tools allow tags to be modified after creation.402

Modifying tags can lead to problems that are difficult to debug.403

The image recipe is usually a small set of files that are stored in a single Git404

repository. Collect the hash of the latest commit of the recipe repository.405

1. What: Image recipe406

2. Where: Apertis GitLab407

3. How: Collect the Git hash of the latest commit of the recipe files408

The Docker containers used for building are stored in GitLab Container Registry.409

The Registry also allow to identify containers by hashes.410

There are expiration policies and clean-up tools for deleting old versions of411

containers. Make sure the golden containers are protected against clean-up and412

expiration.413

1. What: Docker containers used for building: apertis-v2020-image-builder414

and apertis-v2020-package-source-builder415

2. Where: GitLab Container Registry416

20https://manpages.debian.org/testing/apt/sources.list.5.en.html

14

https://manpages.debian.org/testing/apt/sources.list.5.en.html
https://manpages.debian.org/testing/apt/sources.list.5.en.html

3. How: On the GitLab Container Registry collect the hash for each con-417

tainer used for building418

4. Do not forget: Make sure the expiration policy and clean-up routines419

will not delete the golden containers420

From the perspective of APT clients, such as the tools used to create Apertis421

images, APT repositories are simply a collection of static files served through the422

web. The recommended method for creating the golden set of APT repositories423

is to create snapshots using aptly. Aptly is used by Debian upstream and is424

capable of making efficient use of disk space for snapshots. aptly snapshots are425

identified by tags. Something along the lines of:426

aptly snapshot create v1.0.0 from mirror target427

Repeat the command for target, development, sdk, and cluster-v1.428

It is important to mention that the product team needs to create a snapshot429

every time a package is updated. This is the only way to keep track the430

full history of the APT archive.431

1. What: APT repositories:432

deb https://repositories.apertis.org/apertis/ v2020 target development sdk433

deb https://repositories.apertis.org/automotive/ cluster-v1 target434

2. Where: aptly435

3. How: create a snapshot for each repository using aptly436

4. Do not forget: create a snapshot for every package update437

External artifacts should be avoided, but some times they are required. An438

example of external artifacts are the multimedia files Apertis uses for testing.439

Those files are currently simply hosted on a web server which creates two prob-440

lems: no versioning information, and no long term guarantee of availability.441

To address this issue we recommend creating a repository on GitLab, and copy442

all external artifacts to it. This gives the benefit of using the well defined443

processes around versioning and tracking that are already used by the other444

components. For large files we recommend using Git LFS.445

1. What: External artifacts: files that are needed during the build but that446

are not in Git repositories447

2. Where: A new repository in GitLab448

3. How: Create a GitLab repository for external artifacts, add files, use Git449

LFS for large files, and collect the hash pointing to the correct version of450

files451

Notice that the main idea is to collect hashes for the various resources used for452

building. The partial exception are external resources, but our suggestion is to453

also create a Git repository for hosting the external artifacts and then collect454

and use the Git hash as a pointer to the correct version of the content.455

15

At the time of writing there is work planned to automate the collection of456

relevant hashes that were used to create an image. The outcome of the planned457

work will be the publication of text files containing all relevant hashes for future458

use.459

Using the golden components two years after release 1.0.0:460

Creating the new release461

We recommend product teams to make constant releases, for example in a quar-462

terly basis, to cover security updates and to minimize the technical debt to463

Apertis upstream. However in some cases a product team may decide to have464

a much longer release cycle, and for our example, the product team decided to465

make the second release two years after the first one.466

For our example the product team wants the second release to include a fix for467

OpenSSL that corrects a security vulnerability, but be as identical as possible468

otherwise. A note of caution here is that deterministic builds, or the ability to469

build packages that are byte-by-byte identical in different builds, is not expected470

to happen naturally and is outside the scope of this guide. A good source of471

information about this topic is the Debian Reproducible Builds21 page.472

Our aim is to be able to reproduce builds closely enough so that one can reason-473

ably expect that no regressions are introduced. For instance some non essential474

variations could be caused by different time stamps or different paths for files.475

These variations cause builds to not be byte-by-byte identical while the runtime476

behavior is not affected.477

For our example the product team will import the updated OpenSSL package478

from Apertis, build the OpenSSL package, and build images for the new v1.0.1479

release.480

The first step is to rescue all the hashes that were collected on the day of the481

build.482

Reproduce the build483

The build-env.txt produced by the build pipeline should capture all the infor-484

mation needed to reproduce it as closely as possible:485

1. Retrieve the build-env.txt from the golden build486

2. On GitLab create a new branch22 on the previously identified recipe repos-487

itory. The branch should point to the golden commit which should be488

captured in the RECIPES_COMMIT field.489

21https://wiki.debian.org/ReproducibleBuilds
22https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-

branch-from-a-projects-dashboard

16

https://wiki.debian.org/ReproducibleBuilds
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard
https://wiki.debian.org/ReproducibleBuilds
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard
https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-new-branch-from-a-projects-dashboard

3. Execute a CI pipeline23 on the newly created branch, reproducing or490

customizing the original build environment by creating a variable called491

BUILD_ENV_OVERRIDE into which the contents from build-env.txt should be492

pasted, modifying it as desired.493

When the pipeline completes, the produced artifacts should closely match the494

original ones, albeit not being bit-by-bit identical.495

Customizing the build496

On the newly created branch in the forked recipe repository, changes can be497

committed just like on the main repository.498

For instance, to install a custom package:499

1. Check out the newly-created branch500

2. Edit the relevant ospack recipe to install the custom package, either by501

adding a custom APT archive in the /etc/apt/sources.list.d folder if avail-502

able, or retrieving and installing it with wget and dpkg (small packages can503

even be committed as part of the repository to run quick experiments504

during development)505

3. Commit the results and push the branch506

4. Execute the pipeline as described in the previous section507

23https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines

17

https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines
https://docs.gitlab.com/ee/ci/pipelines.html#manually-executing-pipelines

	Background
	Apertis artifacts and release channels
	Reproducible build environments
	Build recipes
	Packages and repositories
	External artifacts
	Main artifacts and metadata
	Package builds

	Recommendations for product teams
	Implementation plan
	Snapshot the package archive
	Version control external artifacts
	Link to the tagged sources

	How to reproduce a release build and customize a package
	Reproduce the build
	Customizing the build

	Example 1: OpenSSL security fix 2 years after release v1.0.0
	Getting started with Apertis: one year before release 1.0.0
	Creating the list of golden components: the day of the release 1.0.0
	Using the golden components two years after release 1.0.0: Creating the new release
	Reproduce the build
	Customizing the build

